

КОММЕРЧЕСКОЕ ПРЕДЛОЖЕНИЕ

ИСХОДНЫЕ ДАННЫЕ

- Тепловой насос независим от системы вентиляции
- Среднегодовая температура + 7.8 °C и расчетная –23 °C
- Усредненные теплопотери составляют 70 Вт/м2 площади здания

ПОДСЧЕТ

Результаты вычислений				
Всего необходимо тепловой энергии	1 6914	кВтч/год		
(включая горячую воду)				
Из этого энергия, полученная с помощью теплового насоса	16504	кВтч/год		
Энергосбережения при установке теплового насоса	11138	кВтч/год		
(количество энергии, полученной из окружающей среды)				
Потребляемая электроэнергия тепловым насосом в год	5366	кВтч/год		
(из этого циркуляционные насосы 917 кВтч/год)				
Потребляемая электроэнергия электрокотлом в год	423	кВтч/год		
Среднегодовая производительность (СОР) теплового насоса	3.71			
(исключая циркуляционные насосы и электронагреватель)				
Доля электронагревателя	2	%		
Электронагреватель необходим ниже температуры	-9	°C		
Максимально необходимая тепловая мощность для здания	7	кВт		
(включая производство горячей воды)				
Из этого необходимая мощность электронагревателя	3	кВт		
Необходимо тепла на горячую воду	3000	кВтч/год		
Условия				
Желаемая температура в помещениях	22	°C		
Источник энергии: Скважина				
Глубина скважин	40	М		
Количество	2	ШТ		
Расстояние между скважинами	10	М		
Диаметр скважины	150	ММ		

ПРЕДЛОЖЕНИЕ

Решение: Источник тепла - скважины

Наименование		Цена в ГРН
Тепловой насос	Thermia Diplomat Duo 6	106 626
Электронагреватели	9 кВт	встроен
Коллектор	200 м	10 356
Скважины	80 м	8 000
Монтажные работы		8 000
Итого:		132 982
Материалы в топочной		по факту
Бак для горячей воды	200 л., 1340xØ555 мм	10 543

Решение: Источник тепла — грунтовый коллектор

Наименование		Цена в ГРН
Тепловой насос	Thermia Diplomat Duo 8	106 626
Электронагреватели	9 кВт	встроен
Коллектор	270 м	6 500
Земляные работы	250 м	7 500
Монтажные работы		8 000
Итого:		128 626
Материалы в топочной		по факту
Бак для горячей воды	200 л., 1340xØ555 мм	10 543

Решение: Источник тепла – воздух

Наименование		Цена в ГРН
Тепловой насос	Thermia Atec 9	107 402
Блок кондиционирования	Активный, водяной контур	встроен
Автоматика		11 224
Монтажные работы		8 000
Итого:		126 626
Бак для горячей воды	200 л., 1340xØ555 мм	10 543

Питание теплового насоса трехфазное, автомат 20 А. Или однофазное, автомат 40 А. Блок кондиционирования позволяет тепловому насосу работать летом на охлаждение дома с помощью водяной системы охлаждения (фанкойлы, холодные стены). Позиция «Коллектор» - материалы земляного коллектора, включая полиэтиленовую трубу, незамерзающую жидкость, наконечники для зондов, детали для терморезисторной сварки, сварка стыков терморезистором, земляные работы, завод коллектора в дом, транспортные расходы, заправка теплоносителя в коллектор. В стоимость включено проектирование топочной с указанными компонентами. Стоимость материалов и работ в топочной может варьироваться в зависимости от проекта системы отопления.

Стоимость теплового насоса и материалов зависит от курса валюты. В данном предложении учтен курс $12\,$ грн за $1\,$ USD.